Menentukanpanjang interval kelas. Panjang interval kelas (i) = Jangkauan (R) / Jumlah Kelas (K) i = 140/6. i = 23.33. 4. Menentukan batas bawah kelas pertama. Tepi bawah kelas pertama biasanya dipilih dari data terkecil atau data yang berasal dari pelebaran jangkauan (data yang lebih kecil dari data data terkecil) dan selisihnya harus kurang Jadijumlah semua nilai yaitu 32 dengan jumlah data sebanyak 8 data. Selain mean, median, dan modus, analisis seringkali didasarkan pada sebaran data (dispersi data) yang meliputi jangkauan, kuartil, desil, dan persentil. Cara Mencari Sum Mean Median Modus Pada Spss. darikelompok data 25% 25% 25% 25% 15% data berada di atas P85 10% 85% Gambar 7.10 Letak Kuartil dan Persentil dalam Kelompok Data Serupa dengan mencari letak median, maka untuk mencari letak kuartil bawah atau Q₁, bagilah banyaknya data dengan 4. • Jika hasilnya adalah bilangan bulat, m, maka Q₁ terletak di tengah-tengah antara Apabilaletak persentil yang ke - 25 adalah (25/100) dan 40 = 10. Yakni data yang ada pada tabel ke - 10 dan kelas persentil yang ada ke - 25 = 51 - 55. Maka akan diperoleh hasil : Jadi dari perhitungan di atas kamu bisa menemukan nilai persentil ke - 25 yakni 50 dan 81. Contohsoal dan jawaban jangkauan persentil. 26, 40, 18, 25, 16, 45, 30 b. Source: slideplayer.info. Contoh soal jangkauan tentukan jangkauan dari data berikut. Contoh soal persentil data kelompok. Source: www.youtube.com. R = x m a x − x m i n. Contoh soal jangkauan tersebut dapat diselesaikan dengan cara seperti di bawah ini: Source: www Nilaitengah tersebut merupakan kuartil tengah. Langkah pertama yaitu mengurutkan data lalu mencari nilai median. Tentukan persentil ke 65 dari data. Tentukan Kuartil Bawah (K1), Kuartil Tengah (K2), Kuartil Atas (K3), Dan Jangkauan Semi Interkuartil Dari Data Berikut:. Simpangan kuartil (q d) adalah : 20 35 50 45 30 30 25 40 45 30 35. . Materi yang satu ini mungkin memadai sulit dipahami maka dari itu Sobat Zenius. Akan doang, elo nggak teristiadat cemas. Pasalnya, dalam artikel ini gue kepingin ngebahas secara detail mengenai materi simpangan kuartil, mulai mulai sejak rumus dan cara mencari simpangan kuartil, jangkauan antar kuartil, ancang, pagar sebatas arketipe soalnya. Sebelumnya kita sudah kontak telaah adapun simpangan kuartil data spesifik dan data kelompok. Kita juga telah ikatan bahas desil dan persentil. Ternyata, masih suka-suka, lho, pembahasan lanjutan dari materi ini. Ukuran penyebaran data teradat Sobat Zenius kuasai setelah mengetahui poin dari sendirisendiri kuartil. Lantas, bagaimana mandu menghitung simpangan kuartil? Nah, daripada Sobat Zenius semakin penasaran, silakan, simak kata sandang ini setakat radu! Apa yang Dimaksud Cak cakupan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Gerogol? Rumus Simpangan Kuartil, Skop antar Kuartil, Jangkauan Kuartil, Persiapan, dan Cerocok Arketipe Soal Cak bertanya Latihan Apa yang Dimaksud Jangkauan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Pagar? Spektrum stereotip disebut lagi dengan range atau uluran. Jangkauan dinyatakan dengan fonem J. Jangkauan adalah selisih dari data/datum terbesar dikurangi data/datum terkecil. Radius antar kuartil dinamakan pula uluran antar-kuartil atau hamparan. Lingkup antar kuartil dinyatakan dengan fonem H. Jangkauannya adalah selisih antara kuartil atas/Q3 dan kuartil radiks/Q1. Simpangan kuartil dinamakan juga rentang taruk antar-kuartil karena adalah setengah dari hamparan ataupun jangkauan antar-kuartil. Nilai berusul simpangan kuartil juga bisa digunakan bikin mengintai jarak dari kuartil dua ke kuartil satu atau ke kuartil tiga, karena sesungguhnya nilai simpangan kuartil adalah galibnya jarak dari kuartil tersebut. Namun, skor ini lain cak acap tepat, ya. Dalam statistika, signifikansi langkah ialah satu sekelumit kali strata suatu hamparan. Sebenarnya, ancang digunakan untuk mencari nilai pagar dalam dan pagar luar. Pagar terbagi atas sogang dalam dan pagar asing. Cerocok dalam adalah nilai satu langkah di bawah kuartil bawah. Sogang asing adalah nilai satu langkah di atas kuartil atas. Gerogol digunakan bakal membatasi data. Biasanya, jika data normal, data hanya fertil di kerumahtanggaan cerocok dalam dan sogang asing. Nah, sebelum lanjut ke pembahasan mengenai rumus simpangan kuartil dan lainnya, Sobat Zenius bisa banget, lho, download aplikasi Zenius tinggal! Adv amat aplikasi, elo bakal menemukan ribuan contoh tanya beserta pembahasan yang bisa elo pelajari dengan saksama, mulai semenjak transendental soal Matematika, Bahasa Indonesia, Bahasa Inggris, hingga mata pelajaran lainnya. Kaprikornus, nggak usah lama-lama pula, segera download banner di bawah ini bagi download aplikasinya! Download Petisi Zenius Tingkatin hasil belajar terlampau kumpulan video materi dan beribu-ribu contoh pertanyaan di Zenius. Maksimaln persiapanmu sekarang juga! Rumus Simpangan Kuartil, Jangkauan antar Kuartil, Jangkauan Kuartil, Langkah, dan Gerogol Tidak banyak perbedaan pada masing-masing rumusnya, baik pada idiosinkratis maupun data kelompok. Perbedaan terdapat plong nilai data terkecil dan data terbesar pada jangkauan, Sobat Zenius. Pada data tunggal, data terkecil dan data terbesarnya dapat dilihat secara jelas, padahal pada data kelompok data terkecil dan data terbesarnya diambil berasal batas bawah inferior dan batas atas kelas atas. Silakan, kita intip rumus-rumusnya! Rumus skop Rumus spektrum antar kuartil Rumus simpangan kuartil Rumus ancang Rumus pagar Pagar dalam = Cerocok luar = Contoh Soal Nah, saat ini Sobat Zenius sudah sempat, kan, rumus-rumusnya. Sekarang, mari kita coba tatap transendental soal simpangan kuartil, jangkauan kuartil, radius antar kuartil, cerocok, dan langkah. Data singularis Dari data 6, 6, 7, 9, 13, 16, 20, berapa skor radius, jangkauan antar-kuartil, simpangan kuartil, persiapan, dan pagarnya? Jangkauan J = 20 – 6 Jangkauan antar kuartil Tentukan lebih lagi tinggal nilai Q1, Q2, dan Q3. Berasal data tersebut, diperoleh Q1 = 6, Q2 = 9, dan Q3 = 16 H = 16 – 6 = 10 Simpangan kuartil Cara mencari simpangan kuartil data tunggal bisa Sobat Zenius aplikasikan menggunakan rumus yang sudah disebutkan sebelumnya. Berasal rumus di atas, kita boleh mendapatkan angka berikut Qd = ½ H = ½ 10 = 5 Ancang L = 3/2 H = 3/2 10 = 15 Cerocok n domestik Pd = 6 – 15 = -9 Gerogol luar Pl = 16 + 15 = 31 Data kelompok Dari tabel di atas, berapa nilai spektrum, jangakauan antar-kuartil, simpangan kuartil, ancang, dan pagarnya? Jangkauan Pada data seperti tabel di atas, X min dan X max bukanlah 40 dan 69, tetapi 39,5 dan 69,5. J = 69,5 – 39,5 = 30 Jangkauan antar kuartil Tentukan terlebih dahulu poin Q1, Q2, dan Q3. Dari data tersebut, diperoleh Q1 = 49,7, Q2 = 52,7, dan Q3 = 57 Setelah itu, Sobat Zenius bisa gunakan rumus jangkauan antar kuartil di bawah ini H = 57 – 49,7 = 7,3 Simpangan kuartil Pakai rumus di pangkal ini cak bagi mengejar simpangan kuartil data kelompok Qd = ½ H = ½ 7,3 = 3,65 Langkah L = 3/2 H = 3/2 7,3 = 10,95 Gerogol Pagar dalam = Pd = 49,7 – 10,95 = 38,75 Pagar luar = Pl = 57 + 10,95 = 67,95 Sekarang giliran Sobat Zenius. Jawab soal di asal ini dengan bermoral, ya! Cak bertanya Latihan Tentukan jangkauan, cak cakupan antar-kuartil, simpangan kuartil, anju, dan pagar dari data berikut 3, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8! Jangkauan = … Cak cakupan antar-kuartil = … Simpangan kuartil = … Ancang = … Pagar intern = … Gerogol luar = … Jikalau Sobat Zenius telah berhasil menjawabnya, berguna elo sudah lalu peka dengan materi kali ini. Namun, jangan berhenti sampai di sini, ya, guys. Perbanyak latihan cak bertanya! Itu dia penjelasan singkat dari gue adapun rumus simpangan kuartil, jangkauan antar kuartil, pagar, hingga anju. Pada dasarnya, materi Statistika nan satu ini tidak begitu rumit jika Sobat Zenius terus belajar dan berlatih dengan tekun. Beruntungnya Sobat Zenius bisa tuntunan dengan konsisten melewati beribu-ribu contoh pertanyaan yang disediakan proporsional Zenius, nih! Selain transendental pertanyaan, di sana juga pembahasan yang untuk elo kian jago dalam ngerjain pertanyaan ujian nantinya. Kalau elo ingin berlatih semenjak sekarang, gampang banget! Elo bisa lekas langganan paket Zenius dengan klik gambar di radiks ini! Nah, sebelum itu, elo juga bisa mempelajari materi simpangan kuartil lebih privat lagi melangkaui video pembahasan dari tutor Zenius. Bagi aksesnya, elo suntuk klik banner di pangkal ini, ya! Selamat belajar! Jangan lupa juga untuk mengimak keseruan lainnya dari Zenius di YouTube! Setakat jumpa di materi lainnya! Baca Lagi Artikel Lainnya Rumus Kuartil Rumus Desil dan Persentil Rumus Peluang Originally published September 18, 2022 Updated by Maulana Adieb Pada kesempatan kali ini kami akan memberikan ulasan mengenai rumus persentil data kelompok beserta dengan penjelasan lengkapnya, dan tentu saja nantinya akan dibarengi dengan contoh soal yang disertai dengan jawaban yang benar serta penyelesaiannya. Persentil data kelompok sendiri merupakan materi di dalam pelajaran matematika yang cukup banyak dibahas, maka dari itu akan sangat bermanfaat jika pada kesempatan kali ini kamu menyimak dengan lengkap ulasan yang kami berikan di bawah ini. Lansung saja kita lihat pengertian dari persentil yang ada di bawah ini. Pengertian Persentil Seperti yang kamu tahu, kuartil membagi data menjadi empat buah bagian. Dan setiap bagian memiliki nilai yang sama banyak. Dengan 3 nilai kuartil yang sama. Pada desil data nya sendiri akan dibagikan untuk menjadi 10 data yang nilai nya sama banyak. Sedangkan ada 9 buah nilai desil di data tersebut. Sementara pada persentil data ini sendiri akan dibagikan menjadi 100 dengan ninlai yang sama banyak. Sehingga akan menghasilkan 99 buah nilai persentil. Jadi jika dilihat berdasarkan dengan pengertiannya, persentil sendiri sebenarnya merupakan arti dari kata persen atau perseratus. Maka dati sini kamu bisa menyimpulkan jika persentil merupakan pembagian data yang terurut menjadi 100 buah bagian yang nilainnya sama banyak. Sedangkan dari 100 buah bagian yang dibagi ke dalam data yang sama banyak ini hanya terbatas pada 99 buah nilai persentil nya saja. Untuk lebih jelasnya, kamu bisa melihat gambar yang ada di bawah ini, sebagai contoh Sementara itu rumus untuk mencari nilai kuartil, nilai desil beserta dengan nilai persentil yang ada pada data tunggal tidaklah sama dengan rumus yang digunakan untuk mencari nilai kuartil, nilai desil dan juga pada nilai persentil yang terdapat pada data kelompok. Maka dari itu, agar lebih jelas kami pun akan memberikan dua rumus yang berbeda. Rumus yang pertama adalah rumus persentil data tunggal dan juga rumus persentil data kelompok beserta dengan ulasannya secara lengkap. Rumus Persentil Seperti yang sudah kamu ketahui, rumus persentil dibagi ke dalam dua jenis. Yang pertama adalah rumus persentil data tunggal, dan yang kedua adalah rumus persentil data kelompok. Meski pun sebenarnya kesempatan kali ini, kami akan memberikan rumus persentil data kelompok, tapi tidak ada salahnya jika kita juga mengetahui rumus persentil data tunggal. Karena bagaimana pun cara menyelesaikan persentil data tunggal dan persentil data kelompok sangatlah berbeda satu dengan yang lainnya. Rumus persentil data tunggal tidak akan bisa digunakan untuk menghitung persentil data kelompok, begitu pula sebalinya, rumus persentil data kelompok tidak akan bisa digunakan untuk menghitung rumus persentil data tunggal. Untuk lebih jelasnya kami sudah menyiapkan pembahasannya di bawah ini, mengenai rumus persentil data tunggal sekaligus dengan rumus persentil data kelompok. Simak penjelasannya di bawah ini Rumus Persentil Data Tunggal Sebelum mengetahui rumus persentil data kelompok, ada baiknya jika kamu juga mengetahui rumus persentil dari data tunggal. Rumus Persentil Data Tunggal Penjelasannya I bilangan bulat yang kurang dari 100 1, 2, 3, …, 99 n banyak data Rumus Persentil Data Kelompok Jika sebelumnya kita sudah membahas dan memberikan rumus persentil data tunggal maka pada kali ini kita akan memberikan pembahasan utamanya, yakni rumus persentil data kelompok. Sesuai dengan janji kita di awal ulasan ini. Rumus persentil data kelompok ini biasa juga disebut dengan persentil bergolong. Rumus ini berfungsi untuk menentukan sebuah nilai persentil yang berasal dari suatu data kelompok. Rumus Persentil Data Kelompok Penjelasannya I Merupakan sebuah bilangan bulat yang nilainya kurang dari 100 1, 2, 3, 4, 5… ,99. Tb Merupakan tepi bawah kelas yang ada pada persentil. n Merupakan jumlah dari seluruh frekuensi yang ada. f {k} Merupakan jumlah frekuensi yang ada sebelum kelas persentil. f {i} Merupakan frekuensi kelas persentil. p Merupakan panjang dari kelas interval. Agar kamu lebih jelas dengan materi pembelajaran kali ini mengenai persentil data kelompok, kami pun akan memberikan contoh soal persentil data kelompok, beserta dengan cara penyelesaian dan jawaban yang benar. Contoh Soal Persentil Data Kelompok Apabila diketahui terdapat sebuah kelompok data, seperti yang ada pada tabel seperti di gambar yang ada di bawah ini Maka pertanyaannya adalah, coba tentukan letak persentil kelompok yang ke 25! Jawaban Coba lihat pada gambar di bawah ini Apabila letak persentil yang ke – 25 adalah 25/100 dan 40 = 10. Yakni data yang ada pada tabel ke – 10 dan kelas persentil yang ada ke – 25 = 51 – 55. Maka akan diperoleh hasil Jadi dari perhitungan di atas kamu bisa menemukan nilai persentil ke – 25 yakni 50 dan 81. Nah, itu dia pembahasan kali ini mengenai rumus persentil data kelompok secara jelas dan lengkap beserta dengan contoh soal dan cara pengerjaannya. Semoga pembahasan kali ini memberikan ilmu pengetahuan baru bagi kamu semua, sampai jumpa pada artikel yang berikutnya. Artikel Lainnya Rumus Kuartil – Lengkap dengan Contoh Soal Kumpulan Rumus Exel Lengkap dan Fungsinya Ekonomi – Penjelasan, Prinsip, Tindakan, Motif Dalam materi Statistika, terdapat tiga jenis ukuran untuk menafsirkan serangkaian data yang dimiliki, yakni ukuran pemusatan data, ukuran letak dan penyebaran data. Rumus persentil adalah salah satu contoh ukuran letak untuk melihat posisi suatu data di dalam sekelompok data yang sudah dapat menghitung nilai persentil dari sekelompok data, maka data tersebut harus diurutkan terlebih dahulu dari nilai paling kecil ke nilai paling besar. Ukuran letak dalam statistika terdiri dari nilai kuartil Q, desil D dan juga nilai persentil P.PengertianPersentil merupakan metode statistika yang termasuk ke dalam ukuran letak atau ukuran penyebaran data. Rumus persentil berguna untuk membagi sekelompok data menjadi 100 bagian sama banyak. Sehingga nilai persentil yang tersebar ada sebanyak 99 konsep, materi persentil sebenarnya sama dengan nilai ukuran penyebaran data yang lain seperti kuartil yang membagi sekelompok data menjadi empat bagian serta desil yang membagi sekelompok data tersebut menjadi sepuluh materi persentil, desil maupun kuartil sangat penting dalam rangka untuk menganalisa ukuran penyebaran data dari sekelompok data. Dengan membagi data menjadi beberapa bagian dapat terlihat kecondongan suatu dengan mengukur persentil pada sekelompok data nilai pelajar, maka bisa diketahui besar nilai yang paling banyak didapat murid. Apabila nilai lebih condong di bawah 70, artinya lebih banyak murid tidak tuntas daripada yang tuntas sehingga perlu dilakukan pengulangan materi tunggal adalah data yang jumlahnya kecil atau sedikit. Suatu data statistik dikatakan sebagai data tunggal apabila data statistik tersebut hanya memuat satu jenis variabel data saja yang ingin diketahui dari objek data tunggal adalah data tinggi badan pelajar, data nilai ujian pelajar dan laba bisnis. Sama seperti kuartil dan desil, persentil bisa digunakan untuk menghitung nilai pada data tunggal maupun data kelompok. Berikut rumus persentil untuk mengetahui letak persentil data tunggalLetak Pi di urutan data ke-iKeteranganPi = persentil ke-ii = 1, 2, 3, …, 99n = banyak jumlah dataRumus Persentil Data KelompokData kelompok merupakan data yang penyajiannya disusun ke dalam kelas-kelas interval tertentu. Hal ini karena jumlah data di dalam data kelompok jauh lebih banyak dibandingkan jumlah data di data tunggal. Penyajian data kelompok menggunakan kelas frekuensi agar lebih muda membagi data kelompok atau data bergolong ke dalam 100 bagian sama besar. Rumus persentil ke-i dari sekelompok data bergolong sebagai berikutKeteranganPi = Nilai persentil ke-il = lebar kelasb = tepi bawahF = Besar frekuensi kumulatif kelas yang dihitung sebelum kelas persentiln = banyak jumlah dataf = frekuensi pada kelas persentilContoh Soal & PembahasanSoal 1Sekelompok data telah dikumpulkan dan menghasilkan data seperti berikut 8, 9, 11, 10, 7, 5, 7, 5, 4, 6. Tentukan berapakah persentil ke 50 dan persentil ke yang ada di soal belum diurutkan dengan benar. Sehingga pertama-tama data diurutkan terlebih dahulu menjadi 4, 5, 5, 6, 7, 7, 8, 9, 10, 11Letak persentil ke-50 dihitung dengan menggunakan rumus persentil data tunggalLetak persentil ke-70 dihitung dengan menggunakan rumus persentil data tunggalSoal 2Sebanyak 40 data nilai ujian siswa kelas 9A telah dikumpulkan dan dikelompokkan ke dalam tabel berdasarkan rentang nilai ujian yang diperoleh sebagai berikutxf61 – 65766 – 70871 – 751676 – 80681 – 853Dari data di atas tentukana. Nilai persentil ke-25b. Nilai persentil ke-75c. Nilai persentil ke-90PembahasanJawabPertama-tama dihitung terlebih dahulu F kumulatif dari data di atasxfF kumulatif61 – 657766 – 7081571 – 75163176 – 8063781 – 85340a. Nilai persentil ke-25sehingga letak persentil ke-25 terletak di data ke-10 dan kelas P25 = 66 – 70 sehingga didapatkan nilai persentilb. Nilai persentil ke-75sehingga letak persentil ke-75 terletak di data ke-30 dan kelas P75 = 71 – 75 sehingga didapatkan nilai persentilc. Nilai persentil ke-90sehingga letak persentil ke-90 terletak di data ke-36 dan kelas P75 = 76 – 80 sehingga didapatkan nilai persentilSoal 3Sekelompok data yang sudah diurutkan sebagai berikut 1, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11. Tentukan berapakah nilai P10 dihitung menggunakan persentil data tunggalRumus persentil termasuk ke dalam ukuran letak data yang dapat digunakan untuk memberi gambaran mengenai posisi-posisi data dari titik-titik pemusatan. Persentil bisa digunakan untuk menghitung data tunggal maupun data kelompok. Pada ilmu statistika, ada sebuah perhitungan yang bernama persentil. Perhitungan ini penting untuk beberapa kondisi tertentu misalkan proses penyelesaian penelitian. Cara mencari persentil sendiri bisa dengan menerapkan rumus lengkapnya. Bagi yang belum memahami secara mendetail tentang persentil ini, maka harus membaca artikel ini sampai tuntas. Selain ulasan rumusnya, maka akan ada juga contoh soal beserta dengan penyelesaiannya. Untuk lebih jelasnya, simak uraian berikut ini Definisi dan Rumus Persentil Persentil adalah sebuah metode yang difungsikan untuk memilah suatu data menjadi 100 bagian sama banyak. Dengan adanya perhitungan tersebut, maka nantinya akan ada 99 nilai dari persentil yang bisa dicari. Bagi sebuah penelitian, perhitungan ini tentunya penting. Sama seperti perhitungan statistika lainnya, persentil ini juga akan dibagi perhitungannya berdasarkan data tunggal dan kelompok. Karena ada pembagian tersebut, maka rumus yang dipakai tidak akan sama. Hal ini juga akan berpengaruh pada proses penyelesaiannya. Simak pembagian rumusnya berikut ini 1. Rumus Persentil pada Himpunan Data Tunggal Untuk rumus data tunggal, maka kombinasinya akan jauh lebih sederhana. Proses pengerjaannya juga akan lebih cepat karena tidak perlu banyak data untuk dimasukkan. Hal ini tentunya akan memberi aspek kemudahan selama pengerjaan dilakukan. Inilah kombinasi rumus yang bisa dipakai Pi = [i n+1] / 100 Meski kombinasi rumus tersebut tergolong sederhana, namun belum tentu semua pihak bisa memahami simbolnya. Sedangkan proses pengerjaan bisa diselesaikan dengan mudah apabila simbol dipahami dengan baik. Berikut rincian keterangannya P = persentil yang akan dicarii = bilangan persentil ke- yang akan dicarin = jumlah data yang dihitung dan dimasukkan dalam rumus 2. Rumus Persentil pada Himpunan Data Kelompok Jika pada data tunggal kombinasi rumusnya akan sederhana, maka pada data kelompok akan jauh lebih kompleks. Akan ada banyak bagian yang harus dihitung dan harus dimasukkan dalam rumusnya. Berikut kombinasi rumus yang bisa dipakai Pi = Tb + {[i / 100 . n – fk ] / fi } . p Berdasarkan rincian rumus tersebut, tentunya tidak semua paham dengan unsur keterangan yang ada dalam rumus. Oleh karenanya, harus paham juga mengenai detail keterangan yang membentuk kombinasi rumus tersebut. Berikut penjabaran lengkapnya P = persentil yang akan dicarip = panjang kelas intervali = bilangan persentil ke- yang akan dicariTb = tepi bawahfk = jumlah frekuensifi = frekuensi untuk kelas persentil yang dipakai Melalui dua rumus tersebut, maka perhitungan persentil bisa dicari. Sesuaikan saja jenis data dengan rumus yang akan dimanfaatkan. Sulit atau tidaknya perhitungan akan sesuai dengan banyaknya data yang disajikan untuk dihitung. Baca Juga Cara Menentukan Kuartil Atas Menggunakan Cara Manual dan Menggunakan Perantara Software Proses Mencari Simpangan Baku dengan Rumus yang Tepat Contoh Soal Persentil Setelah mengetahui definisi dan rumusnya, maka harus tahu juga bagaimana cara mencari persentil dengan memanfaatkan rumusnya. Oleh karenanya, pada uraian ini akan memberikan penjelasan soal dan jawabannya. Untuk mengetahuinya, simak uraian berikut ini Soal Data Tunggal Ada data sebagai berikut 12, 18, 11, 20, 19, 12, 6, 8, 13, 15 Hitung persentil ke-30 dari deretan data tersebut! Jawaban Urutkan dulu datanya, dan berikut urutannya 6, 8, 11, 12, 12, 13, 15, 18, 19, 20Letak persentil 30 ada di 3010+1 = 330 / 100 = 3,3Kemudian masukkan data yang ada pada rumus P30 = a3 + 0,3 a4 – a3 = 11 + 0,3 12 – 11 = perhitungannya, maka persentil ke-30 adalah 11,3. Soal Data Kelompok Ada sebuah data pada tabel berikut NilaiBanyak Siswa41 – 501051 – 60561 – 70771 – 80881 – 90491 – 1004 Hitunglah persentil ke-50 dari data tersebut Jawaban Buat dulu tabel untuk frekuensi kumulatifnya NilaiBanyak SiswaFK41 – 50101051 – 6051561 – 7072271 – 8083081 – 9043491 – 100438 Cari tempat atau titik P50 sebagai berikut P50 = 50/100 . 38 = 19Masukkan data dalam rumus P50 = 49,5 + [19 – 15 / 7] . 10 = 49,5 + 20 = 69,5Jadi sudah diketahui bahwa persentil ke-50 adalah senilai 69,5. Itulah cara mencari persentil terlengkap beserta dengan contoh soal dan pembahasannya. Dengan adanya penjelasan di atas, maka proses pemahamannya akan jauh lebih mudah. Contoh soalnya juga bisa dijadikan acuan belajar yang tentunya mudah diterapkan. Navigasi pos Cara Menghitung Jangkauan atau Rentang – Pembelajaran mengenai materi penyebaran data sepertinya tidak hanya dibahas dalam ilmu statistika saja, melainkan juga di ilmu matematika. Penyebaran data sendiri dapat diartikan sebagai seberapa jauhnya pemerolehan rata-rata yang terdiri atas angka-angka yang berderet. Dengan penggunaan istilah penyebaran sendiri, tentunya kita perlu melakukan sebuah pengukuran dari adanya data yang disebar. Salah satu ilmu statistika yang dibahas dalam matematika adalah jangkauan. Jangkauan dalam matematika berhubungan dengan penyebaran angka-angka yang memiliki sebuah batas maksimal dan batas minimal. Data yang berupa angka-angka dalam sebuah jangkauan tentunya dapat dihitung menggunakan metode tertentu. Jangkauan sangat berhubungan dengan penyebaran sebuah data. Fungsi utama dalam penggunaan jangkauan adalah untuk mencari rentang pada sebuah data. Selain itu, dengan adanya penghitungan jangkauan kita dapat mengukur sebuah data. Data yang ditampilkan tentu saja harus diolah sedemikian rupa agar dapat diproses lebih lanjut. Pada pembahasan kali ini, kalian akan mempelajari mengenai perhitungan jangkauan di dalam sebuah data. Pahami dengan baik materi berikut agar dapat melakukan uji asah kemampuan kalian dengan mengerjakan beberapa latihan soal. Baca juga Cara Membuat Histogram Data Kelompok Dan Contoh Soal Baca juga Contoh Soal Kuartil Data Tunggal dan Data Kelompok Pengertian Jangkauan atau Range Jangkauan menjadi salah satu bagian untuk pengukuran dispersi pergerakan untuk perpindahan yang menyatakan seberapa jauh penyimpangan nilai-nilai data. Nilai data ini berasal dari nilai pusat yang berupa ukuran dengan pernyataan mengenai seberapa banyak nilai data yang berbeda dengan nilai pusatnya. Jangkauan dapat disebut sebagai rentang range yang menggambarkan selisih antara data dengan nilai yang terbesar dengan data nilai data terkecil. Namun, perlu dibedakan dengan definisi dari jangkauan antar-kuartil karena berhubungan dengan selisih dari kuartil atas dan bawah. Jangkauan memiliki beberapa data yang akan diukur, baik data yang berbentuk tunggal ataupun kelompok. Pada pengukuran jangkauan data tunggal lebih mudah dibandingkan dalam pengukuran data kelompok. Hal ini tergantung juga pada kerumitan dan jumlah data yang dipaparkan. Secara umum, pengukuran jangkauan pada data dapat dilakukan dengan mudah asal teliti dalam pengerjaannya. Dalam sebuah sebaran data, nilai-nilai yang tersebar dapat berupa deret sehingga dapat dilihat dengan dekat pembagian jangkauan yang paling terbesar dan yang paling terkecil. Apabila dalam deret terdapat nilai yang saling dekat satu sama lain dapat diartikan bahwa jangkauan yang dipaparkan kecil. Lambang jangkauan pada umumnya adalah J atau R yang memiliki makna range. Jarak atau kisaran pada nilai range merupakan ukuran paling sederhana dari ukuran penyebaran data. Dengan begitu, jarak menjadi perbedaan antara nilai terbesar dan nilai terkecil dalam suatu kelompok data, baik data populasi atau sampel. Sebuah jarak jika semakin kecil maka ukurannya menunjukkan karakter yang lebih baik karena data mendekati nilai pusat. Baca juga Cara Menentukan Simpangan Kuartil Dengan Mudah Baca juga Cara Menghitung Laju Inflasi Dengan Tepat Rumus Jangkauan Range merupakan salah satu cara pengukuran dalam bidang statistik yang menunjukkan jarak pada sebuah penyebaran data. Umumnya, dalam mencari range perlu diketahui nilai terendahnya Xmin dan nilai tertingginya Xmax. Selain dalam sebuah ukuran jangkauan, ukuran ini juga diterapkan pada pembahasan distribusi frekuensi. Cara menghitung jangkauan atau range dapat dilakukan dengan mengetahui jenis datanya. Umumnya, data yang ditampilkan merupakan kelompok data kuantitatif, namun harus dibedakan apakah data yang dipaparkan termasuk dalam data tunggal atau data kelompok. 1. Range data tunggal Rumus untuk data yang tidak berkelompok atau data tunggal sebagai berikut. Jarak range = Nilai terbesar – Nilai terkecil Selain ditulis berderet, sebuah penyebaran data tunggal dapat ditulis dengan tabel sehingga harus teliti dalam mencari nilai tengah kelas yang terbesar dan terkecil. Misalnya, data nilai UAS kelas A adalah 90 80 70 90 70 100 80 50 75 70. Rentang nilainya adalah 100 – 50 = 50. 2. Rumus data kelompok Rumus untuk data kelompok sebagai berikut. Range = Batas atas kelas tertinggi – batas bawah kelas terendah Pages 1 2 3 4

cara mencari jangkauan persentil data kelompok